ローターセール船を御存知でしょうか?
船に、帆柱のような円筒(ローター)を立て、それを回転させて推進力を得ます。
横から風を受ける時、ローターを時計方向に回転させ、ベンチェリー効果で推進力を得ます。もちろん、右からの風ならば、反時計回りの回転させます。
100年前から存在する古い技術ですが、今年になって、ノルウェーで可倒式ローターを取り付けたRORO船(SC Connector号)がデビューしたとのことなので、取り上げることにしました。


まず、RORO船を解説します。
Roll On・Roll Offの略で、簡単に言えば、貨物専用フェリーです。
フェリーとの決定的な違いは、原則として一般乗客を乗船させません。
(※例外的に12人までの乗客(通常は運転手)が乗船できる)
ROは、Rotorの略ではないので、御注意ください。

ローターセール船が推進力を得られるのは、横からの風です。
帆船と似ていますが、帆のように向きを最適化できないため、真正面だけでなく、真後ろからの風でも、推進力を得られません。
もちろん、角度をつければ推進力を得られるので、ジグザグに航行すれば良いのですが、そんな無駄な航路を航行するメリットがあるのか、気になるところです。

帆装でも、最も推進力を得られるのは、横からの風ですが、真後ろからの風でも推進力を得られます。大型帆船では見たことがありませんが、ヨットではスピネーカーと呼ばれる追風専用の帆もあります。
帆船も、最大の推進力を得られるのは、斜め後ろからの風です。
スピネーカーは別として、帆に働く力は、風の流れによって生み出される揚力です。なので、帆の表面を風が流れていく必要があります。
また、揚力は帆の面に垂直に働くので、帆は横方向に展開している時に、揚力を最大限に利用できます。つまり、ほぼ横風の時、最大の推進力が得られることになります。
ですが・・・

ですが、ですが、航行風ってあるんですね。
船が前へ進めば、当然、前から風が吹きます。実際に船が受ける風は、この航行風と自然風の合成風です。
船の真横から風速10m/sの風を受けている時、船が20ノット(約10m/s)で航行しているなら、合成風は斜め前方(約45度)から風を受けることになります。
これでは、最大の推進力を得られません。
実は、最大の推進力を得られるのは、斜め後方からの風なのです。

さて、航海速力が上がれば上がるほど、前寄りの風に変わります。
では、船は、真正面からの風では進めないのでしょうか?
真正面からの風でも、前へ進むことは可能ですし、模型では製作されたこともあります。
ですが、航行風で前へ進むことはできません。航行風を起こすためのエネルギーが、航行風から得られるエネルギーより大きくなる(損失があるから)ためです。
そもそも、航行風で船が動くなら、第1種永久機関になってしまいます。
合成風を考えると、風力を利用する船は、風速を超える速さで航行することはできないことが、わかります。


ところで、一般的な貨物船は、どれくらいの速さで航行しているのでしょうか。
特殊なものを除くと、15ノット前後です。これを風速に換算すると7.7m/sです。
実際の帆船は、どれくらいの速さで航行できるのでしょうか。
咸臨丸(3檣バーク型)は、37日でざっと10000kmを航行しているので、平均は6ノットくらいです。
世界一周のヨットレース、ヴァンテ・グローブでは、80日ほどでゴールします。
このレースの航路は、24000〜26000海里になると言います。南極周極流を利用できることもあり、平均で約13ノットで航海しています。
逆説的に見ると、スピードだけを追求しても、平均13ノットが限界となりそうです。
貨物船にしても、客船にしても、決められた期日に間に合うように到着したいところです。ですが、速度に特化したレース用のヨットでも、平均速度は13ノットで、貨物船の速度としては下限に近いところです。

「いやいや、帆走だけのヨットと違い、機走が主で、帆走は従の関係だ。速度はエンジンで維持し、帆走はエンジンの負荷を下げる役目だ」
それが上手くいけば良いのですが、航行風を考えると、中々微妙なところです。
貨物船の速度が15ノットなら、約7.7m/sの航行風が吹きます。真後ろから成分だけで、7.7m/s以上の風が吹かないと、推進力を得られません。
そのような気象条件を満たすことは、多くはないと思います。
なので、航海速力を抑える方が、風力を有効に使えるはずです。

さて、ローターセール船だけでなく、ノルウェーのお隣のスウェーデンでは、ワレニウス・マリン社が大型帆船オーシャンバード号の開発を進めています。
排水量32000t、全長200m、全幅40m、全高105m(短縮時45m)で、5檣スクーナー型に類型の帆船です。帆は、翼断面を持つ硬翼帆となっています。
速力は、10ノットだそうです。
一般的な貨物船より速力がありませんが、その分、風を有効に使えるのでしょう。



最後に、帆船の帆について、個人的なアイデアを紹介します。
帆は、機能的に飛行機の翼と似ています。
空気の流れを受けて、揚力を得ます。ですので、翼で使われる技術は、帆でも応用ができると思われます。
飛行機の離着陸時に、フラップを展開することは、多くの方が御存知でしょう。
民間旅客機は、隙間フラップが一般的ですが、水陸両用機であるUS-2では、吹き出しフラップと呼ばれる特殊なフラップが使われています。
US-2は、海上への離着水を行います。荒波の影響を抑えるため、民間旅客機よりも遥かに遅い50ノット程度の速度で離着水を行います。これを実現するために、吹き出しフラップが採用されました。(PS-1で採用し、改良型であるUS-2に受け継がれた)
吹き出しフラップは、動力を使って翼上面に気流を作り、翼上面から気流が剥がれるのを防ぎます。


これを応用し、帆に吹き出しフラップを付けることを提案します。
吹き出しフラップを付ければ、帆の面積以上の推進力を得られます。もちろん、抗力も大きくなりますが、揚力と抗力の合成が推進力になるので、抗力も推進力に変換できます。
もちろん、通常の帆では無理ですが、硬翼帆ならば、不可能ではありません。
1980年代の新愛徳丸から、散発的に硬翼帆を持つ貨物船が作られてきました。現在では、ウィンドチャレンジャー計画が進められているそうです。


硬翼帆の翼端に吹き出しフラップを設け、揚力を増やせるかもしれません。
また、一般的な吹き出しフラップではなく、オーグメンター翼も面白いかもしれません。

私には、ローター船のローターを回すより、吹き出しフラップの圧搾空気に動力を使う方が、効率が良いように思えます。
まぁ、自然風が相手ですから、フラップが効果を上げるほど、遅い気流が翼面から剥がれるのか、怪しいところはありますが・・・


政府は、2050年のカーボンニュートラルを発表しました。
民間の船舶の多くが、ディーゼルエンジンを動力としています。ディーゼルエンジンは、熱効率が高く、大型船の機関では50%を超えると言います。しかも、重油などの低質油も使えます。
なので、慌ててディーゼルエンジンから燃料電池などの代替動力に切り替えると、トータルではCO2排出量が増えたり、重油だけが余ってしまう可能性があります。
原油は、成分を分離して、それぞれに利用されます。ですので、特定の成分だけを使わないようにすると、原油の使用量は変化せず、使わない成分が廃棄物となります。その廃棄物が焼却処分されるようでは、本末転倒です。

広い視野を持ち、多角的に進めていかなければなりません。
前述の原油の利用削減も、バランス感覚と計画性が大切です。
社会の構造や運営も、同様です。
例えば、帆走が有効に使えるように、貨物船の航海速力を落としても成り立つ社会を考えていく柔軟性が必要ですね。